宁波新芝生物科技股份有限公司 NINGBO SCIENTZ BIOTECHNOLOGY CO.,LTD

地址:宁波国家高新技术区木槿路65号 邮编:315010

网址:www.scientz.com 售后:0574-8686 1966

总机:0574-8835 0069 8711 2106

服务热线: 4008-122-088

适用广

MICROBIAL GROWTH CURVE ANALYZER -

○ 产品说明

为解决目前微生物高通量筛选工具,无法实现同时大体积和高浓度样本的实时培养与检测的难题。TGC-100使用常规的试管作为培养容器,结合先进的光路系统和机械设计,可实现大体积培养和光密度精准测量,能够同时对36个微生物样本进行实时检测,自动记录生长浓度变化与结果,同时具备转速可调的震荡系统和宽范围温度控制。

同时,TGC-100每个样本通道搭配独立的RGBW四色光照模块,可实现0-300000 Lux光照强度调控(约为0~5000 μ mol·m⁻²·s⁻¹),可设置光照周期,模拟自然界的光环境变化,用于藻类培养与研究。

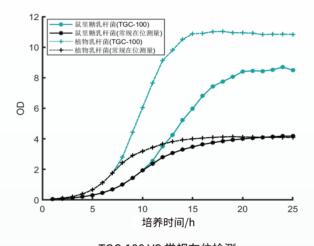
此外,可提供专用手机端APP,可远程查看数据,实时了解实验进度。

全过程无需人员值守、无需频繁取样、彻底杜绝污染风险,真正解放人力。

无需手动稀释 高OD直读

最高培养 体积20mL

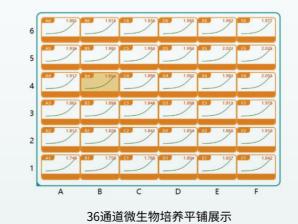
独立控制的


强大的数据 分析系统

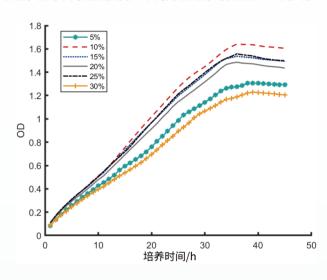
○ 应用案例

微生物在位培养检测

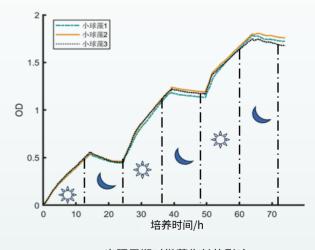
高检测上限:


常规OD值检测是基于朗伯比尔定律利用透射光进行测量,但样 品浓度较高时,测量结果会偏离朗伯比尔定律定律,无法反馈样 品浓度真实变化情况(如图中黑线)。TGC-100对透射光和散射 光同时进行测量,结合独创算法,有效延长OD值测量上限,保 证结果准确性,真实反馈样品变化(如图中蓝线)。

TGC-100 VS 常规在位检测


高通量培养:

可同时测量36个试管样品,精心设计的光路保证各个通道之间的 结果具有良好的一致性,36个试管的数据可平铺或堆叠进行查 看,方便实验结果的比较。


微藻在位培养检测(选配)

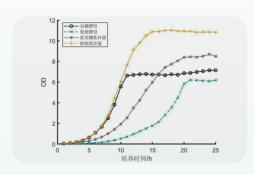
6组独立控制的光照模块,可设置不同光强度(光强度范围:0~300000lux,约为0~5000μmol·m⁻²·s⁻¹),通过组合不同比例的光源研究不同光照强度、不同光谱成分对微藻生长的影响。

光照强度对微藻生长的影响

可设置光照周期(光照周期是指24 h内光照时间和黑暗时间的分配比例,又称光暗比(L/D)),模拟自然界的光照环境变化,探究光照周期对微藻生长的影响。

光照周期对微藻生长的影响

MICROBIAL GROWTH CURVE ANALYZER -



○关键产品创新

高通量检测

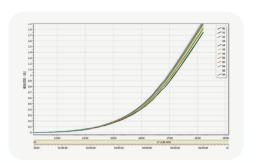
仪器可容纳36个试管同时培养检测,满足 用户多样化的实验通量和培养体积需求,有效 缩短实验周期,提高研究效率。

高检测上限

同时使用透射光和散射光进行检测,突破传统单透射光检测上限,适用于高浓度微生物(如发酵后期菌体)的直接检测,避免稀释操作带来的误差。

大体积容量

采用实验通用的玻璃试管作为培养容器,可实现 3mL~20mL体积范围内的培养检测;实验结束后仅 通过清洗就可重复使用,无需定制耗材,大幅度降低 使用成本。


先进的震荡和控温结构

可在0-800rpm自由设置转速,保证液体充分摇匀; 4° C- 60° C的精准调控,支持中途变温功能,动态调整培养温度,可用于特定代谢产物积累等研究。

光照功能(选配)

6组独立RGBW四色光照系统,可自由组合光谱成分,满足不同类型光合微生物或藻类的培养需求;可设置光照周期,模拟自然界的光环境变化,探究光照因素对生长状况的影响。

数据精准读取

全新的光路和数据采集电路设计,全自 动数据采集方法,获取的数据更加稳定精 确;可以试管初始状态为参考,避免因参比 试管的差异引起数据差异。

简单易用的操作系统

中文操作系统,界面简洁明了,操作简 单,一键即可轻松获取微生物生长曲线或标 准曲线,提升实验数据的处理效率。

手机端APP(选配)

可实时接收数据的手机端APP,帮助实验 人员从电脑前解放,随时随地查看实验进展。

4

MICROBIAL GROWTH CURVE ANALYZER -

○应用领域

微生物实时在位培养检测

微生物基础研究

培养条件优化、菌株改造、抗逆性实验、微生物生长代谢检测等

食品研究

酸奶、酒类、酱油、等菌类发酵食品的生产工艺优化

畜牧业应用

禽类/水产养殖致病菌防治,治病机理研究等

药物研究

益生菌、抗生素等生产工艺研究;确定抗菌剂的最小抑制浓度、抗生素或其他化合物最小致死剂量、不同物质的毒性等

化妆品研究

开发活性化妆品成分

抗菌材料研究

开发无菌材料、食品防腐材料等

藻类培养与在线监测(选配功能)

(#\frac{1}{2})

细胞样本

藻类培养与控制实验;梯度对比实验、适于水体生态毒理学研究检藻类生理生态研究、水生态研究等

○ 耗材

18*150mm 高硼硅玻璃试管

塞

○ 选配件

光照模块

○产品参数

检测波长	660nm(等效OD 600)	振摇速度	50-800 rpm;可以静置培养
吸光度范围	0~30 OD/0~15 OD	可进行参考通道选择	YES
线性误差	<2%	后期图像处理和专业化展示	YES
光源	激光二极管	灭菌模块	YES
光源寿命	2万小时	扣暗电流功能	YES
采样间隔	3-10分钟可设置	光程标准化	YES
工作时长	1~1600h	中途变温功能	YES
培养试管	直径18mm,高150mm	背景颜色扣除	YES
最多板数	36	审计追踪	YES
最大培养液容量	20ml (3ml-20ml)	故障诊断	报警码详尽、可以快速定为故障原因
培养温度	30°C~60°C@25°C/	界面操作	界面友好,用户可以快速上手,具备快捷运行功能
	选配制冷: 4~60℃@25℃	通讯	RJ45网络接口
控温精度	土0.1度	主界面	参数设置界面、状态显示界面、样品选择界面、
加热速度	1度/分钟		数据展示界面、结果分析界面。
振摇方式	水平圆周振摇	更多菜单	启动界面、登录界面、初始化界面和调试界面
振摇幅度	2mm	报警功能	YES

5